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1 Introduction 
Metric geometry is governed by the concepts of congruence of line segments 
and angles. In contrast, tqology is the geometry of properties which remain 
invariant under topological mappings, i.e. mappings such that they and their 
inverses are single-valued and continuous. These maps may be expressed by 
groups of continuous functions. Topology is therefore a major division of 
abstract mathematics with applications in concrete situations that range from 
knots and knitting to systems of connected points such as railway networks, 
trees, and chemical formulae and to the properties of strange and complex sur- 
faces such as the Moebius strip.l 

Various aspects of topology have been applied to structural and other problems 
in chemistry, but the aspect which has so far proved to be most useful is the theory 
of mathematical graphs.2 Graphs are collections of points and lines, drawn so 
that pairs of the points are connected together. Such a graph may, for example, 
illustrate the operations of any symmetry group. It may also be a concise state- 
ment of our preconceptions about the connections (which may be independent 
of symmetry) within a system based, hopefully, on reasonable premises. To 
emphasize this dependence of the connectivity graph on our prejudices we 
reproduce in Figure 1 a religious graph which symbolically represents the 
Christian Trinity. This diagram expresses relationships in close accord with those 
embodied in a valence-bond description of ammonia-in both cases there is a 
concise statement of unprovable but established understanding of the main 
features of the system of interest, The special value of chemical graphs, however, 
is they may often also be used to obtain additional information about the system. 
Indeed, very powerful semi-empirical conclusions may frequently be obtained 
by the sympathetic use of the symmetry and topology of the p r ~ b l e m , ~ ~ ~  par- 
ticularly in the cases of polygonal and polyhedral molecules and other chemical 
s y ~ t e m s . ~ ~  
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Figure 1 

We shall now show, mainly by reference to square-planar and tetrahedral 
molecules, how the general solution of some topological problems may be applied 
to a variety of situations of chemical interest (Section 2). In Section 3 we give 
detailed examples designed to help the reader to apply similar methods to other 
systems of interest. The information which we shall obtain consists of energy 
levels that refer to equivalent components of the system. These are calculated 
algebraically in terms of a limited number of connectivity parameters variously 
called ‘resonance integrals’, ‘interaction constants’, ‘coupling constants’, etc. 
according to the context. In the simplest cases only a single connectivity para- 
meter, K, may be needed, and the calculated energy levels take the form 
Eg = Eo + CZK. Much m a y  be deduced even from knowledge of the sign and 
order of magnitude of K. Secondly, in a case with a manifold of energy levels, the 
empirical determination of a single energy level separation suffices to determine 
the energies of all levels in the manifold. In general, useful information can always 
be obtained so long as the number of important and distinctive parameters 
does not exceed the number of relevant experimental data. 

2 Connectivity in Familiar Chemical Ideas 
The manner in which a molecule is thought to be connected together enables us 
to select those interactions which are important and those which are of little 
significance. Thus both CHI and P4 have the symmetry of a regular tetrahedron, 
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but the topology of the bonding schemes which are intuitively required by the 
chemist are quite different. The topology of the valence bonds in phosphorus is, 
however, the same as that of the bonding-pair electron repulsions and the proton 
nuclear spin coupling in methane. 

In Figure 2 we show the structure of these and other tetrahedral molecules 

Figure 2 

BehO( MeC02)G 

(simplified 1 Q 

Topological diagrams for tetrahedral molecules 

and ions with a diversity of bond connectivity graphs. The high, T d ,  symmetry 
of each compound enables us to solve problems within each set of equivalent 
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atoms exactly in terms of the interaction between any pair of equivalent atoms. 
Nevertheless, we can see immediately that, in some cases such as the [CU~OC~~, , ]~-  
ion, the interactions between equivalent atoms are unlikely to be the most im- 
portant! Rather we would expect that the important interactions affecting the 
properties of the [ C U ~ O C ~ ~ ~ ] ~ -  ion are those between the set of four copper atoms 
and each of the other sets of atoms. Clearly topology will not help us much in 
this case, whereas it is likely to dominate the discussion of all of the properties of 
P4. There are many other cases in which topologically distinct figures have a 
common symmetry.s A familiar example is provided by the pairs of Platonic 
solids of oh and Ih symmetry. 

A decision on the topology of a chemical problem may be of more funda- 
mental importance than a decision on its real or approximate symmetry, since 
these decisions must be based on a realistic appraisal of energetic factors. 
Consider the bonding in ‘octahedral’ transition-metal complexes. True octahedral 
complexes are not common but, nevertheless, the most important properties of 
the majority of distorted complexes may be interpreted in terms of Oh symmetry, 
to which modifications due to small distortions are added if required. The recog- 
nition of a superclass of ‘octahedral’ complexes is itself essentially a topological 
perception. In these metal complexes the body of evidence leads us to argue that 
the magnitude of the metal-ligand a-bonding is such as to give rise to interesting 
and measureable effects with decreasingly important roles assigned to mbonding, 
distortions, and ligand-ligand bonding interactions.lOsll 

The relative order of magnitude of these interactions is similar in unsaturated 
organic molecules, but in these cases the bonding is generally much stronger and 
we rarely encounter a partially filled a-orbital. Rather it is the v-orbital set which 
gives rise to the bulk of the properties of interest and it is the topology of the 
n-bonding which forms the basis of Huckel theory in two or three dimensions.* 

Although many chemical bonds are of similar strengths, their stretching 
frequencies often differ widely because of kineticenergy effects. This leads to the 
recognition of characteristic group frequencies in infrared spectroscopy. For 
similar bonds in a variety of molecules, modifications to the characteristic 
frequency may be meaningfully interpreted in terms of the relative strengths of the 
bonds. Conversely, the restoring forces for most bending and deformation modes 
are dominated by electron-repulsion effects of a different topology. Thus the 
in-plane C- H deformation frequencies of aromatic compounds are much higher 
than those associated with the out-of-plane modes. Molecular vibrations may be 
of the same intrinsic energy either accidentally or as a necessary consequence 
of symmetry. These vibrations will then couple together relatively strongly if the 
topological relationship between the groups is sufficiently important for them to 
‘know’ one another, and the coupling may be recognized by the appearance of a 
manifold of frequencies centred on the group frequency;l2 indeed, the average- 

lo  H. B. Gray, J. Chem. Educ., 1964,41, 2. 
l1 S. F. A. Kettle, J. Chem. Educ., 1966, 43, 652. 
Is G. Herzberg, ‘Molecular Spectra and Molecular Structure: Volume 11, Infra-red and Raman 

Spectra of Polyatomic Molecules’, Van Nostrand, New York, 1945. 

460 



Jotham 

frequency rule is a valuable aid to vibrational assignments. l3 Furthermore, there 
are certain groupings of symmetry-related vibrations which have a characteristic 
topology determined by their number and geometrical relationship. Thus, 
for example, even the vibrations of a methyl group may often be readily dis- 
tinguished from related vibrations of a methylene g r 0 ~ p . l ~  

An intrinsically topological topic is the interpretation of the ‘coupling’ 
between nuclear-spin moments, which is an essential feature of the analysis of 
high-resolution n.m.r. spectra. l5 Each significant coupling constant defines a 
connection which is a component part of the overall topology of the problem. 
This connection has a peculiar form, because it has (2Sz + 1)  (2Sj + 1) sub- 
components which lead to the familiar dipolar coupling term, -Jzj Sdj ,  in the 
effective Hamiltonian used to interpret the system. * Analogous descriptions apply 
to the hyperfine interactions in e.s.r. spectroscopy and to the bonding process 
itself, which may also be thought of in terms of a dipolar electron-spin coupling. 

Unfortunately, these spin-coupling problems are difficult to illustrate concisely 
because of the large number of spin functions required to describe systems of 
interest, and since we have previously given the energy levels arising from spin- 
spin coupling for a large range of molecular symmetries and topological situa- 
tions,ls we shall omit examples of this type from Section 3 below. It should 
also be noted that there are many similarities within all systems in which the 
coupling of angular momenta is involved. For example, an effective connectivity 
scheme underlies the formulation of Russell-Saunders coupling, spin-orbit 
coupling, jj-coupling, etc. 

Finally, we comment on the fact that, after the recognition of elements and 
atoms, the most powerful perception in chemistry has been the recognition of the 
chemical bond. Clearly then, at least implicitly, chemists like to think of chemistry 
as a topological subject. 

3 General Solution of Some Simple Topological Problems 
In this section we shall be concerned with the solution of some simple problems 
associated with tetrahedral and square-planar molecules and in illustrating the 
more general applicability of these solutions with a few other examples. We 
arbitrarily choose to discuss vibrations of tetrahedral molecules and the Hiickel 
energies of the square system in the most detail. 

*An interesting feature of the coupling constants in n.m.r. spectroscopy concerns the nature 
of the coupling between equivalent nuclei. This can be neglected because the selection rules 
appropriate to the normal n.m.r. experiment rigidly exclude transitions between energy levels 
which differ in this coupling energy. The complexity of the problem is thereby often strikingly 
reduced by neglect of these connections although, in many cases, the neglected interactions 
are amongst the strongest for that molecule. 
l3 W. J. Lehmann, J. Mol. Spectroscopy, 1964, 7, 1. 
l4 A. D. Cross, ‘An Introduction to Practical Infra-red Spectroscopy’, 2nd Edn., Butterworths, 

Is J. W. Emsley, J. Feeney, and L. H. Sutcliffe, ‘High Resolution Nuclear Magnetic Resonance 

l6 R. W. Jotham and S. F. A. Kettle, Inorg. Chim. Acta, 1970, 4, 145. 

London, 1964. 

Spectroscopy’, Pergamon, Oxford, 1965. 
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A. Tetrahedral Systems.-The Td character table (Table 1 )  will be required for 
the problems discussed in detail below. 

Table 1 T d  Character table 

Ta E SC3 3c2 6S4 6 0 d  Rotations Vectors Vector 

A1 1 1 1 1 1  x2 + y2 + z2 
A2 1 1 1 - 1  - 1  X Y Z  
E 2 0 2 0 0  (222 - x2 - y2 

T2 3 - 1  - 1  1 - 1  (X ,Y ,Z )  ( X Y , X Z , Y Z )  

products 

x2 - y2) 
Ti 3 - 1 - 1 - 1 1 (R,,R,,Rz) 

(i) C-H Stretching Vibrations of CH,. The C-H stretching vibrations of me- 
thane are readily shown to transform as Al + T2.  The non-degenerate mode is 
active only in the Raman spectrum whereas the triply degenerate mode may be 
observed in both the i.r. and the Raman spectra. The observed modes of T2 
symmetry are not quite pure stretching vibrations because deformation modes 
of the same symmetry are mixed in slightly and the vibrations must be ortho- 
gonal to the T, translations, but to a very good approximation the modes 
described as the Al and T, C-H stretching vibrations are observed at 2914 and 
3020 cm-l, respectively.12 If wewrite the four individual C-H stretching motions 
as rl-r4 we may readily show that the appropriate orthonormal combinations of 
these unit vectors are given by (1). 

If a negative coefficient indicates a compression, we can readily see that these 
expressions are not exact, for each of the T2 modes should include a slight oppos- 
ing motion of the carbon atom to maintain the centre of gravity, and we empha- 
size that the observed frequencies are those of the normal modes rather than 
the symmetry modes. Nevertheless, the functions #1-$4 may be used to extract 
useful information from the observed frequencies. To do this we must consider 
the energy appropriate to a single C-H stretching motion in CH4 which we shall 
call v and the interaction energy between each pair of stretching motions which 
we shall call v’. In tetrahedral CH4 all the interactions are of the sametype. 
We may represent this set of interactions by the topological matrix (2). 

r1 r2 r3 r4 
r l O 1 l l  
r , 1 0 1 1  
r 3 1 1 0 1  
r4 1 1 3 0  
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It follows, then, that the eigenvalues (i.e. the observed frequencies) of this prob- 
lem may be obtained by solving the secular equation (3). 

V - E  V’ V’ V’ 

V’ v - E V‘ V’ 

V‘ V’ V - E  V‘ 
V’ V‘ V’ V - E  

(3) = o  

This equation is grossly simplified if we utilize the symmetry functions 
$1-$4. We first write out a new energy matrix (4) for the (ri 1 1  r3) in terms of 

v and v’. We now transform the matrix (4) into the matrix (6) by either a simple 
direct expansion technique or, more rapidly, by proceeding through the inter- 
mediate matrix (5) .  Thus, for example: 

= 0 [after substituting for each (ri 11 r j )  the appropriate element of 
matrix (4)] 

($11 ( $ 2 1  < $ 3 I  ($41  

0 v - v ’  0 0 
0 v - v ’  0 0 
0 

I $1) v + 3v’ 0 0 0 
I *2) 

0 v - u ’  
(6) 

463 



Chemistry-a Top0 logical Subject 

The solution of the corresponding secular equation (7) is trivial. 

v + 3 v ’ - E  0 0 0 
0 v - v ’ - E  0 0 
0 0 v - v ’ - E  0 
0 0 0 v - v ‘ - E  

= 0 (7) 

Thus the eigenvalues v + 3v‘ and v - v’ (thrice) correspond to the Al and T2 
modes, respectively. If these are equated to the observed frequencies, we find 
that, for CHI, v = 2994 cm-l and v’ = - 26 cm-l. The quantity v should be 
comparable for all types of C-H bond in similar molecules. Weseealso that the 
interaction between two stretching motions is not very great in this case (as in 
all hydrocarbons),reflecting the very high localization of the electrons in the well 
separated bonds. The sign of v’ is often of great interest ; a negative sign indicates 
that the out-of-phase motion is of higher frequency than the in-phase motion 
(i.e. the stretching of one bond facilitates the stretching of the adjacent bond in 
the case of CH,). 

(ii) The Vibrations of P4. The number of vibrations of CH, is nine, whereas P4 
has only six vibrations which classify as Al + E + T2. These are observed at 
606 (Raman, polarized), 363 (Raman), and 465 cm-l (Raman, i.r.), respectively. 
It is clear that we could treat the Al and T2 modes as the radial motions of the 
phosphorus atoms with respect to the centre of gravity. This discussion would 
parallel that given in (i) and we calculate v = 500 cm-1 and v’ = 35 cm-l. The 
interaction between two of these radial stretches now, however, represents a 
stretching of a P-P bond and it is not surprising that these radial stretches 
hinder one another. To complete a discussion on this basis the Emode would have 
to be described independently in terms of the tangential motions of the phos- 
phorus atoms. 

Alternatively, it is possible to set up this problem in terms of an edge basis, 
for the six P-P bonds transform as Al + E + T2. The same vibrations may be 
described in terms of either these P-P stretches or the radial and tangential 
motions of the vertices both for CH, and for P4. Intuitively, however, we prefer 
an edge topology for P, and a radial one for CH4. The interaction matrix for the 
six P-P bond stretches s12-&4 is given in (8). 
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From standard group-theoretical arguments we find that the symmetry modes 
are as shown in (9). 

1 
A1 $1 = - (s12 f s13 + s 1 4  f s 2 3  f s 2 4  f s34) 

4 6  
1 

$2 = 2/12(2s12 - sl3 - s14 - s23 - s 2 4  + 2s34) 

$3 = T(s13 - s 1 4  - s 2 3  + S24) 
1 

1 [ 944 = - p 1 2  - S34) (9) 

If we use these functions to diagonalize the matrix (6) and equate the solutions 
to the observed frequencies we find 

A ,  v + 4vc + vt = 606 cm-l 
E Y - 2vc + vt = 363 cm-l 
T2 v - vt = 465 cm-l 

Solution of these equations gives v = 454, vc = 41, and vt = - 11 cm-l. In this 
case, if the T2 translation is neglected (and the T2 functions 944-948 are readily seen 
to be virtually free of a translational element), a complete description is obtained 
in terms of three independent parameters v, vc, and vt by the application of 
symmetry to the topological matrix. As there are three observable frequencies a 
complete semi-empirical description is obtained for this problem. 

(iii) Molecular Orbitals of CHI. If the 1s electrons of the carbon atom are neg- 
lected, the basis set of atomic orbitals for CH4 consists of the 2s and 2p orbitals 
of the carbon atom, which transform as Al and T2 respectively in Td symmetry. 
The four 1s ligand group orbitals of the hydrogen atom also transform as 
Al + T2.l1 This set of four orbitals bears the same symmetric and topological 
relationships as the four C-H stretching motions of CHI. If we call the four 1s 
orbitals $ 1 4 4 ,  then the A, and T2 ligand group orbitals are isomorphous to the 
set (l), and we may parallel the whole of the discussion in (i) by replacing each 
vij by a Hij. This calculation is, however, of little significance in this case because 
the off-diagonal Hi1 are virtually zero unless the pairs of 1s orbitals overlap 
appreciably. As a result of the negligible values of the off-diagonal elements the 
Al and T2 ligand group orbitals are essentially isoergic. Instead, the analysis of 
this problem is dominated by the interactions between the 2s and 2p orbitals of 
the carbon atom and the hydrogen orbitals. As the set of ligand group orbitals 
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isomorphous to (1) contain equal contributions from each atom, the A, and the 
three T, bonds will also involve these equal contributions so that the tetrahedral 
symmetry is maintained in the delocalized description. The valence-bond descrip- 
tion, involving sp3 hybrid orbitals on the carbon atoms, remains useful and 
popular precisely because it provides a simple concept which may be directly 
related to the intuitively perceived topological requirements of this problem 
and related ones. 

(iv) Molecular Orbitals 0fP4. Unlike the case of CHI, topological considerations 
play a great part in the discussion of the molecular orbital diagram of P4, because 
the overlap of the symmetry-related atomic orbitals in this molecule is not 
negligible. If we consider each phosphorus atom separately and select as a basis 
set of atomic orbitals the 3s and 3p orbitals only, we can consider each of these 
sets to be subject to a perturbing field of CW symmetry due to the other three 
phosphorus atoms. Defining local z-axes accordingly we see that each 3s and 
3pz orbital may be classified as Al and each pair of 3px and 3p, orbitals as E 
in the CsV symmetry. One spz hybrid lies inside the tetrahedron and the second 
lies outside. The latter hybrids accommodate the two essentially non-bonding 
electrons on each phosphorus atom. The other set of four spz hybrid orbitals and 
the 3px and 3py orbitals are responsible for ‘central’ and ‘edge’ bonding of the 
phosphorus atoms in the tetrahedron.The set 4 x (1ocalAJtransforms asAl + T2 
in Td symmetry, whereas the set 4 x (local E )  transforms as E + TI + Tz .  

Within each of these sets the splitting may be decided entirely on topological 
grounds, and explicit use of functions derived by symmetry leads to a rapid 
solution of this part of the problem. The assessment of the interaction between 
the T, states can only be decided on energetic grounds. This general solution of 
topological matrices by symmetry arguments forms the basis of Huckel theory 
in two dimensions and is readily extended to three, We have already solved the 
central bonding portion twice! The solutions are contained in the matrix (6) 
if we replace v and v’ by the Hiickel parameters ac and pc (c indicating cmtral 
and $1-$4 are appropriate combinations of the spz hybrid orbitals isomorphic 
to the equations (1). a and 16 are regarded as intrinsically negative (i.e. binding) 
quantities so that the Al orbital at aC + 3Pc is more stable than the three T2 
orbitals at ac-pc. (The latter should not be regarded as antibonding, but as 
less stable than their parent orbitals.) In this case we may reasonably assume the 
topological basis to be mainly edge bonding, although the localgs andpy orbitals 
lie largely outside the tetrahedron. Although we may readily derive the repre- 
sentation of the set of eight tangential orbitals, it is difficult to relate the pairs of 
orbitals at each corner neatly to the three edges that meet there. We refer the 
interested reader to the discussion of this peripheral and rr-bonding problem 
by Schmidtke for its detailed solution.6 He found that the complete orbital 
energy sequence for the twelvep orbitals is A, < T ,  < E < Tl < T2. Inclusion of 
the 3s orbitals stabilizes this A, orbital further but destabilizes the T2 orbitals 
slightly. 

The calculation shows very simply that, in addition to the non-bonding 
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electrons in external A, and T2 orbitals, the remaining twelve valence electrons 
of P4 are accommodated in bonding orbitals of Al, E, or T2 symmetry. The Al 
bonding orbital has an entirely central character whereas the E orbitals are 
peripheral. The T2 bonding orbitals have a mixed central and peripheral nature. 
The particular admixture is determined by the relative magnitudes of the 
‘resonance’ integrals, pi. Finally we may remark that the six ‘valence bonds’ 
of P4 transform as the six edges of a tetrahedron, i.e. as Al + E + T2. The repro- 
duction of six bonding orbitals spanning just these representations reflects, 
ultimately, the intuitive choice of an edge topology for the important interactions. 

Kettle has given a very similar discussion of P4 in which 12 bonding electrons 
are found in edge orbitals of types A ,  + E + T2 whereas the remaining eight 
electrons are found in face-bonding orbitals of type Al + T2? These face orbitals 
correspond to a mixture of our central bonding orbitals and external non- 
bonding orbitals. It is important to realize that the topological basis of the prob- 
lem can be ambiguous for many three-dimensional molecules.* 

(v) Stretching Vibrations of Deuteriomethanes. A small distortion of a tetrahedral 
molecule which does not destroy one of the three-fold axes usually leads to CsV 
symmetry. The topology of the system may well be invariant to this distortion, 
so that we must explore the consequences of introducing an energetic inequiva- 
lence into the same topological framework. 

A particularly interesting example is provided by the vibrational spectrum 
of CH3D. The reduced mass of a C-D bond pair is almost , /2  times as large as 
that of a C-H bond pair [more accurately ~ D / P H  = ,/(13/7)], and C-D 
stretching vibrations are observed near 2200 cm-1 whereas the corresponding 
C-H modes occur at about 3000 cm-l. Nevertheless, the electronic forces in 
CH,D cannot differ greatly from those in CH4; in particular it seems very likely 
that the coupling between C-H stretching motions and C-D stretching motions 
will be very similar to that between two C-H stretching motions. We therefore 
replace the matrix (4) of the CH4 problem by (10) in which we 
expect V’H-H M V’H-D but VHZ , / ( 1 3 / 7 ) ~ ~ .  

(rl I (r2 I (r3 I (r4 I 
I PI> V H  V’H-H V’H-H V’H-D 

1 r2> V‘H-H VH V’H-H V’H-D (10) 
I r3) V’H-H V’H-H VH V’H-D 

I r4) V’H-D V’H-D V’H-D VD 

Linear combinations of r1-~4 of 2A1 + E symmetry are readily constructed 
from the CsV character table (Table 2)  and are given by (11). 

Table 2 C3v Character table 
c3v E 2C3 3oV Rotations Vectors Vector products 
A1 1 1 1 2 222 - x2 - y2, 

x2 + y2 + z2 
A2 1 1 - 1  Rz 
E 2  - 1  0 (Rz, RY) ( x ,  Y )  (XZ,  Y Z ) ?  ( X Y ,  x2 - Y 2 )  
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Regrouping the terms of matrix (10) in terms of the functions (11) we obtain 
the matrix (12). 

(*l I ($2 I 0 4 3  I ($4 I 
I $1) VD 4 3  V’H -D 0 0 
I$d J3v’H-D VH + 2V’H-H 0 0 (12) 1w 0 0 VH - V’H-H 0 
I $4) 0 0 0 VH - V’H-H 

Applying standard perturbation arguments,* we may immediately write the 

3( V’H -D)2 3(lr’H-D)2 

- VD VH - V D  
eigenvalues of (12) as VD - - (Ai), VH f 2V’H-H -t- - ( A  1) , and 

*The ‘repulsion’ of interacting energy levels and the particular form of the zeroth- and first- 
order perturbation energies may be neatly illustrated by a calculation similar to many of those 
in this article. Suppose that we have to solve the general two-eigenvalue problem summarized 
in the determinant 

A quadratic equation is obtained on expansion of the determinant: 
( A  - E ) ( B -  E )  - Ca=O 
E8 - ( A  + B)  E + (AB - C’) = 0 

2E = ( A  + B )  f .\/ [ (A + B)’ - 4(AB - C’)] 
Then : 

= ( A  + B )  AZ .\/“(A + BIB + 4ca1 
N o w i f A = B , t h e n E = A &  C 
but if A z=- B, then we may write: 

-1 = ( A  + B)  f ( A  - B )  [l + -+ ..... 2 ca 

Whence 

Note that, since A > B, the perturbations automatically cause a repulsion oflevels. Intermediate 
cases, where A - B z C, must be solved exactly to give eigenvalues between the above limits. 
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VH - Y’H-H (E) if VH - V D  V’H-D. The expression for the eigenvalues of the 
type-E functions are identical to those for the T2 functions of CH,, but the Al 
functions are different. The reduction in symmetry leads to more mixing with 
other motions than in CH, but this is again neglected. Furthermore the eigen- 
values of (12) incorporate four different parameters and only three frequencies 
are available experimentally. It is precisely because the topology of the inter- 
actions of CH, and CH,D vibrations are almost identical, and therefore 
V’H-H z U’H-D, that we can attempt to solve the problem in the same way as the 
corresponding CH, problem, The reader will appreciate immediately the greater 
difficulties in treating the isomorphous problem of CH,CI for which two topo- 
logical parameters are needed. 

The relevant frequencies observed for CH,D are 2982 (Al), 3030 (E),and 2205 
cm-l (A1),12 which may be compared with the corresponding modes of CH,, 
namely the Al mode at 2914 cm-I and the T2 mode at 3020 cm-l. If we equate 
the three observed frequencies to VH + ZV’H-H, VH - V‘EI-H, and vD,respectively, 
we obtain values of 3016,2205, and - 16 cm-I for VH, YD, and V’H-H. The cor- 
responding values of V H  and V’H-H of CH, are 2994 and - 26 cm-l. If we assume 
that V’H-DE - 16 cm-l also, then the term ~(V’I~-D)~/VEI - VD, which we have 
neglected, may be seen to have a value only of the order of 1 cm-l. The value of 
V’H-H for CH3D obtained in this way appears to be strikingly different from the 
value obtained for CH,. The difference in the efective V’H-H values reflect the 
limitations of some of our approximations in which deformation modes are 
neglected. In particular, there is an important interaction in CH, and CH,X 
compounds between the Al C-H stretching fundamental and the overtone of 
one of the asymmetric C-H deformations. In CH,D the latter is found at 
1477 cm-l (2 x 1477 = 2954) and therefore perturbs the A1 fundamental to 
higher energy, whereas in the corresponding case of CH, (2 x 1526 = 3052) the Al 
fundamental is only slightly perturbed to lower energy by this interaction. The 
values of rn for CH2D2 and CHDB are 2997 and 2992 cm-l, respectively,12 
(cf. 2994 and 3016 cm-l for CH, and CH3D). 

The approximations which are required increase rapidly with molecular 
complexity and with any reduction of symmetry. Under these conditions, the 
number of independent energy parameters required to describe the system 
rapidly exceeds the number of independent experimental data, and the informa- 
tion obtained from symmetric and topological arguments is correspondingly 
diminished. 

B. Planar Systems. (i) Hiickel Energies of Cyclobutadiene. The D4h character 
table appropriate to this and later problems is given in Table 3. 

We associate with each point in the system the Coulomb integral, a. In the 
topological matrix it is necessary to distinguish between the pairs of points 
which are cis and trans to one another. We therefore require two resonance 
integrals is taken to 
consist of the four out-of-plane (local py, molecular p z )  orbitals of the carbon 
atoms which are numbered sequentially around the square. The remaining 

and st to distinguish the two cases. The basis set 
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orbitals all lie in the plane of the molecule and are regarded as ‘framework‘ 
and/or non-bonding orbitals. The energy matrix is given in (1 3). 

The set of four p y  orbitals transform as Azu + Bzu + Eg. The orthonormal 
are given by (14). The reader should note that this set combinations of 

is also isomorphous to (1). 

With these functions we immediately obtain the eigenvalues of this general 
topological problem as a + 2Pc + /It (Azu),  a - 2Pc + P t  (Bzu) and a - fit 

(twice, Eg).  In Hiickel theory it is conventional to set the resonance integrals 
between non-adjacent atoms equal to zero and, therefore, for the case of cyclo- 
butadiene, the four n-electrons are allocated to orbitals of the lowest energy 
to give the configuration (a2u)z(eg)z. This configuration does not confer great 
stability as in the corresponding case of the hexagonal system. The spectro- 
scopic transitions Azu c-) EB (Eu) and Eg t) BW (Eu) are both electric-dipole 
allowed in (x,y) polarization,whereas the Azu cs B2, transition (Big) is forbidden. 
Neither of the allowed transitions would involve a change in electron-repulsion 
energy so that it is hypothetically possible to determine the quantity P, exactly 
for this unknown molecule. 

(ii) Stretching Vibrations of XeF,. This problem is isomorphous to the previous 
one, but the interaction constant v’t can no longer be neglected. Indeed, as the 
trans-ligand atoms in such molecules tend to form bonds involving the same 
orbitals of the central atom, it is very probable that 1 v’t 1 > 1 vtc I. The four 
stretching modes #1-#4 which are isomorphous to the set (14) transform as 
Alo, Blg, and E,, respectively. From the observed1’ Raman and i.r. frequencies 
of XeF, [543 (R, p), 502 (R, dp), 586 cm-l (i.r.)] we calculate the values of the 
three parameters as v = 554, v’, = 10, and v’t = - 32 cm-l. 

(iii) Other Polygons. In Table 4 we give general solutions of topological matrices 
for polygons up to the hexagon, distinguishing between the central, peripheral, 
and the out-of-plane interactions. The local z-axes point directly to the centre 

l7 K. Nakamoto, ‘Infra-red Spectra of Inorganic and Co-ordination Compounds,’ 2nd Edn., 
Wiley, London, 1970. 
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Table 4 General expressions for the eigenvalues of topological matrices for 

System Central interactions (sp z) Peripheral interactions (pz)  

Linear dimer, Dcoh cQ+ a + /3 

regular polygons 

r Eigenvalue r Eigenvalue 

c u + a  - /3 

/3 
Equilateral triangle, Al' a + 2P Az) 01' - 2/3' 

Square, D4h 

E'* a' + 18' 
A2g 01' - 2pc' - /3t' 

B 2 g  a' + 2/3c' - Pt' 

Ez,* 01' + /3t' 

El'* a' - g'po' + g/3m' 
E2'* a' + gPo' - g'/3m' 

E,g* a + Po' + Pm' - /3p' 

Elu* a' - Po' + Pm' -k /3p' 

D3h E'*aO1 - 
A1g 01 + 2/3c + f i tb  
Big 
Eu* 01 - /% 

cx - 2/3c + Pt 

Pentagon, D5h Al' a + 2P0 + 2Pm A2' 01' - 2/30' - 2&' 
[ g  = +(1/5 + I), El'* 01 + g;So - gPm 
g' = *(1/5 - 11  E2'* a - gPo + g'Pm 

Hexagon, D6h A I Q  a + 2/30 4- 2Pm + /3p A2g 01' - 2/30' - 2pm' - /3p' 

E2g* a - /30 - P m  + P p  

B1u 01 - 2/30 + 2pm - /3p B2u 01' + 2/30' - 2Pm' + Pp' 

Elu* 01 -k P o  - Prn - /3p 

An asterisk indicates the existence of an additional cross-term (usually small). 
0 c = cis; t = trans; o = ortho; m = meta; p = para. 

of the polygon. Note the similarity of the algebraic expressions of related eigen- 
values for each set of interactions; the absolute values of the at and the will, 
however, differ for each case. 

C. Molecular Orbitals of an Octahedral Transition-metal Complex.-We take 
as our final example the energy levels of an octahedral transition-metal complex. 
It is well known that for this system the crystal-field theory predicts a splitting 
of the ten-fold degenerate 2 D  state (i.e. dl or dB configurations) into 2Eg and 
2T2g states separated by the frequently parameterized quantity 1ODq. The 
molecular orbital approach is even more valuable since it provides scope for 
consideration of both a- and n-bonding effects on these two states and also 
information on a number of important excited states. lo The pictorial description 
of the crystal field, which invokes orbital destabilization through repulsive 
interactions with ligand electrons, is clearly topological in essence and the same 
is true of the qualitative molecular orbital description. It is also interesting that 
Schmidtke, perhaps recognizing that the a- and n-bonding interactions are 
topologically equivalent to strong ligand-ligand repulsion interactions along 
the edges of the octahedron combined with metal-ligand a-bondingasaperturba- 
tion, has shown that a similar sequence of energy levels may be obtained by 
either method. 

4 Concluding Remarks 
Before we tackle any problem of high symmetry it is always advantageous and 
l8 H. H. Schmidtke, J.  Chem. Phys., 1968, 48,970. 
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Out-ofiplane interactions ( py) Transformation properties of orbitals at 
centroid 
S P d 

c g +  c u +  + n u  C g + + n g +  A g  

Al' E' + A2" Al' + E' + E" 

Al' El' + Az" AX' + EZ' + E," 

sometimes necessary to decide the basis set for the problem on energetic grounds 
and to select the topology of the important interactions within this basis set. 
The topological matrix is then divided into two parts which depend respectively 
on the symmetry of the problem and the magnitude of the energy terms. The 
first part of the problem may be solved exactly, but the second part becomes 
increasingly empirical as the complexity of the problem increases and/or the 
syinmetry decreases. In some cases the interactions between equivalent members 
of the basis set are not the most important, but in many others a system may be 
accurately described by the solutions of a simple topological matrix. Such a case 
is the familiar n-bonding problem of aromatic hydrocarbons. At the other 
extreme we note the low significance of many ligand-ligand interactions and of 
the vibronic coupling in many cases where a static distortion is predicted by the 
Jahn-Teller theorem. 

We have given examples of the profound influence of relative energy on the 
whole basis of a problem and its manner of solution. We may comment addi- 
tionally that topological considerations are more readily introduced into some 
problems, such as spin-coupling, than into others such as the 7r-interactions 
of the tetrahedron. Topological considerations enter neatly into a valence-bond 
model, whereas the application of symmetry in this case is seriously complicated 
by frequent non-orthogonality of the basis set of orbitals. Conversely, in a 
molecular orbital discussion the symmetry is readily introduced but often this is 
at the cost of a non-intuitive topology in addition to the problems associated 
with the neglect of configuration interaction in polyelectronic systems. Neither 
the symmetry nor the topology of a problem is usually introduced explicitly 
into a self-consistent-field calculation, as the former is not readily used to shorten 
the process time and the latter is not required as a conceptual aid! Conversely, 
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the general discussion of any problem is facilitated by distinguishing those parts 
of the problem which involve the symmetry, the topology, and the energy 
terms appropriate to the problem in a fully complementary manner. The general 
solutions of common topological matrices in high-symmetry systems may be used 
in this way to treat many diverse problems, once the energetic considerations 
have been clarified. 
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